
Chapter 1

Logic and Set Theory

To criticize mathematics for its abstraction is to miss the point entirely.

Abstraction is what makes mathematics work. If you concentrate too

closely on too limited an application of a mathematical idea, you rob

the mathematician of his most important tools: analogy, generality, and

simplicity.

– Ian Stewart

Does God play dice? The mathematics of chaos

In mathematics, a proof is a demonstration that, assuming certain axioms, some

statement is necessarily true. That is, a proof is a logical argument, not an empir-

ical one. One must demonstrate that a proposition is true in all cases before it is

considered a theorem of mathematics. An unproven proposition for which there is

some sort of empirical evidence is known as a conjecture. Mathematical logic is

the framework upon which rigorous proofs are built. It is the study of the principles

and criteria of valid inference and demonstrations.

Logicians have analyzed set theory in great details, formulating a collection of

axioms that affords a broad enough and strong enough foundation to mathematical

reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists

of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each

of the axioms included in this theory expresses a property of sets that is widely

accepted by mathematicians. It is unfortunately true that careless use of set theory

can lead to contradictions. Avoiding such contradictions was one of the original

motivations for the axiomatization of set theory.
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A rigorous analysis of set theory belongs to the foundations of mathematics and

mathematical logic. The study of these topics is, in itself, a formidable task. For

our purposes, it will suffice to approach basic logical concepts informally. That is,

we adopt a naive point of view regarding set theory and assume that the meaning of

a set as a collection of objects is intuitively clear. While informal logic is not itself

rigorous, it provides the underpinning for rigorous proofs. The rules we follow

in dealing with sets are derived from established axioms. At some point of your

academic career, you may wish to study set theory and logic in greater detail. Our

main purpose here is to learn how to state mathematical results clearly and how to

prove them.

1.1 Statements

A proof in mathematics demonstrates the truth of certain statement. It is therefore

natural to begin with a brief discussion of statements. A statement, or proposition,

is the content of an assertion. It is either true or false, but cannot be both true and

false at the same time. For example, the expression “There are no classes at Texas

A&M University today” is a statement since it is either true or false. The expression

“Do not cheat and do not tolerate those who do” is not a statement. Note that an

expression being a statement does not depend on whether we personally can verify

its validity. The expression “The base of the natural logarithm, denoted e, is an

irrational number” is a statement that most of us cannot prove.

Statements on their own are fairly uninteresting. What brings value to logic is

the fact that there are a number of ways to form new statements from old ones.

In this section, we present five ways to form new statements from old ones. They

correspond to the English expressions: and; or; not; if, then; if and only if. In the

discussion below, P and Q represent two abstract statements.

A logical conjunction is an operation on two logical propositions that produces

a value of true if both statements are true, and is false otherwise. The conjunction

(or logical AND) of P and Q, denoted by P ∧Q, is precisely defined by
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P Q P ∧Q
T T T

T F F

F T F

F F F

.

Similarly, a logical disjunction is an operator on two logical propositions that

is true if either statement is true or both are true, and is false otherwise. The dis-

junction (or logical OR) of P and Q, denoted P ∨Q, is defined by

P Q P ∨Q
T T T

T F T

F T T

F F F

.

In mathematics, a negation is an operator on the logical value of a proposition

that sends true to false and false to true. The negation (or logical NOT) of P ,

denoted ¬P , is given by

P ¬P
T F

F T

.

The next method of combining mathematical statements is slightly more subtle

than the preceding ones. The conditional connective P → Q is a logical statement

that is read “if P then Q” and defined by the truth table

P Q P → Q

T T T

T F F

F T T

F F T

.

In this statement, P is called the antecedent and Q is called the consequent. The

truth table should match your intuition when P is true. When P is false, students

often think the resulting truth value should be undefined. Although the given def-

inition may seem strange at first glance, this truth table is universally accepted by

mathematicians.
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To motivate this definition, one can think of P → Q as a promise that Q is

true whenever P is true. When P is false, the promise is kept by default. For

example, suppose your friend promises “if it is sunny tomorrow, I will ride my

bike”. We will call this a true statement if they keep their promise. If it rains and

they don’t ride their bike, most people would agree that they have still kept their

promise. Therefore, this definition allows one to combine many statements together

and detect broken promises without being distracted by uninformative statements.

Logicians draw a firm distinction between the conditional connective and the

implication relation. They use the phrase “if P then Q” for the conditional con-

nective and the phrase “P implies Q” for the implication relation. They explain

the difference between these two forms by saying that the conditional is the con-

templated relation, while the implication is the asserted relation. We will discuss

this distinction in the Section 1.2, where we formally study relations between state-

ments. The importance and soundness of the conditional form P → Q will become

clearer then.

The logical biconditional is an operator connecting two logical propositions

that is true if the statements are both true or both false, and it is false otherwise.

The biconditional from P to Q, denoted P ↔ Q, is precisely defined by

P Q P ↔ Q

T T T

T F F

F T F

F F T

.

We read P ↔ Q as “P if and only if Q.” The phrase “if and only if” is often

abbreviated as “iff”.

Using the five basic operations defined above, it is possible to form more com-

plicated compound statements. We sometimes need parentheses to avoid ambiguity

in writing compound statements. We use the convention that ¬ takes precedence

over the other four operations, but none of these operations takes precedence over

the others. For example, let P , Q and R be three propositions. We wish to make a

truth table for the following statement,

(P → R) ∧ (Q ∨ ¬R). (1.1)

We can form the true table for this statement, using simple steps, as follows
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P Q R (P → R) ∧ (Q ∨ ¬R)

T T T T T T T T T F

T T F T F F F T T T

T F T T T T F F F F

T F F T F F F F T T

F T T F T T T T T F

F T F F T F T T T T

F F T F T T F F F F

F F F F T F T F T T

1 5 2 7 3 6 4

.

We conclude this section with a brief mention of two important concepts. A

tautology is a statement that is true in every valuation of its propositional variables,

independent of the truth values assigned to these variables. The proverbial tautology

is P ∨ ¬P ,

P P ∨ ¬P
T T T F

F F T T

1 3 2

.

For instance, the statement “The Aggies won their last football game or the Ag-

gies did not win their last football game” is true regardless of whether the Aggies

actually defeated their latest opponent.

The negation of a tautology is a contradiction, a statement that is necessarily

false regardless of the truth values of its propositional variables. The statement

P ∧ ¬P is a contradiction, and its truth table is

P P ∧ ¬P
T T F F

F F F T

1 3 2

.

Of course, most statements we encounter are neither tautologies nor contra-

dictions. For example, (1.1) is not necessarily either true or false. Its truth value

depends on the values of P , Q and R. Try to see whether the statement

((P ∧Q)→ R)→ (P → (Q→ R))

is a tautology, a contradiction, or neither.
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1.2 Relations between Statements

Strictly speaking, relations between statements are not formal statements them-

selves. They are meta-statements about some propositions. We study two types

of relations between statements, implication and equivalence. An example of an

implication meta-statement is the observation that “if the statement ‘Robert gradu-

ated from Texas A&M University’ is true, then it implies that the statement ‘Robert

is an Aggie’ is also true.” Another example of a meta-statement is “the statement

‘Fred is an Aggie and Fred is honest’ being true is equivalent to the statement ‘Fred

is honest and Fred is an Aggie’ being true.” These two examples illustrate how

meta-statements describe the relationship between statements. It is also instruc-

tive to note that implications and equivalences are the meta-statement analogs of

conditionals and biconditionals.

Consider two compound statements P and Q that depend on other logical state-

ments (e.g., P = (R → S) ∧ (S → T ) and Q = R → T ). A logical implication
from P to Q, read as “P implies Q”, asserts that Q must be true whenever P is true

(i.e., for all possible truth values of the dependent statements R, S, T ). Necessity is

the key aspect of this sentence; the fact that P and Q both happen to be true can-

not be coincidental. To state that P implies Q, denoted by P ⇒ Q, one needs the

conditional P → Q to be true under all possible circumstances.

Meta-statements, such as “P implies Q”, can be defined formally only when

P and Q are both logical functions of other propositions. For example, consider

P = R ∧ (R → S) and Q = S. Then, the truth of the statement P → Q depends

only on the truth of external propositions R and S.

The notion of implication can be rigorously defined as follows, P implies Q if

the statement P → Q is a tautology. We abbreviate P impliesQ by writing P ⇒ Q.

It is important to understand the difference between “P → Q” and “P ⇒ Q.” The

former, P → Q, is a compound statement that may or may not be true. On the

other hand, P ⇒ Q is a relation stating that the compound statement P → Q is

true under all instances of the external propositions.

While the distinction between implication and conditional may seem extrane-

ous, we will soon see that meta-statements become extremely useful in building

valid arguments. In particular, the following implications are used extensively in

constructing proofs.
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Fact 1.2.1. Let P , Q, R and S be statements.

1. (P → Q) ∧ P ⇒ Q.

2. (P → Q) ∧ ¬Q⇒ ¬P .

3. P ∧Q⇒ P .

4. (P ∨Q) ∧ ¬P ⇒ Q.

5. P ↔ Q⇒ P → Q.

6. (P → Q) ∧ (Q→ P )⇒ P → Q.

7. (P → Q) ∧ (Q→ R)⇒ P → R

8. (P → Q) ∧ (R→ S) ∧ (P ∨R)⇒ Q ∨ S.

As an illustrative example, we show that (P → Q)∧ (Q→ R) implies P → R.

To demonstrate this assertion, we need to show that

((P → Q) ∧ (Q→ R))→ (P → R) (1.2)

is a tautology. This is accomplished in the truth table below

P Q R ((P → Q) ∧ (Q → R)) → (P → R)

T T T T T T T T T T T T T T

T T F T T T F T F F T T F F

T F T T F F F F T T T T T T

T F F T F F F F T F T T F F

F T T F T T T T T T T F T T

F T F F T T F T F F T F T F

F F T F T F T F T T T F T T

F F F F T F T F T F T F T F

1 7 2 10 3 8 4 11 5 9 6

.

Column 11 has the truth values for statement (1.2). Since (1.2) is true under all

circumstances, it is a tautology and the implication holds. Showing that the other

relations are valid is left to the reader as an exercise.

Reversing the arrow in a conditional statement gives the converse of that state-

ment. For example, the statement Q→ P is the converse of P → Q. This reversal
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may not preserve the truth of the statement though and therefore logical implica-

tions are not always reversible. For instance, although (P → Q)∧(Q→ R) implies

P → R, the converse is not always true. It can easily be seen from columns 9 & 10

above that

(P → R)→ ((P → Q) ∧ (Q→ R))

is not a tautology. That is, P → R certainly does not imply (P → Q) ∧ (Q→ R).

A logical implication that is reversible is called a logical equivalence. More

precisely, P is equivalent toQ if the statement P ↔ Q is a tautology. We denote the

sentence “P is equivalent to Q” by simply writing “P ⇔ Q.” The meta-statement

P ⇔ Q holds if and only if P ⇒ Q and Q⇒ P are both true. Being able to recog-

nize that two statements are equivalent will become handy. It is sometime possible

to demonstrate a result by finding an alternative, equivalent form of the statement

that is easier to prove than the original form. A list of important equivalences ap-

pears below.

Fact 1.2.2. Let P , Q and R be statements.

1. ¬(¬P )⇔ P .

2. P ∨Q⇔ Q ∨ P .

3. P ∧Q⇔ Q ∧ P .

4. (P ∨Q) ∨R⇔ P ∨ (Q ∨R).

5. (P ∧Q) ∧R⇔ P ∧ (Q ∧R).

6. P ∧ (Q ∨R)⇔ (P ∧Q) ∨ (P ∧R).

7. P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R).

8. P → Q⇔ ¬P ∨Q.

9. P → Q⇔ ¬Q→ ¬P (Contrapositive).

10. P ↔ Q⇔ (P → Q) ∧ (Q→ P ).

11. ¬(P ∧Q)⇔ ¬P ∨ ¬Q (De Morgan’s Law).

12. ¬(P ∨Q)⇔ ¬P ∧ ¬Q (De Morgan’s Law).
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Given a conditional statement of the form P → Q, we call ¬Q → ¬P the

contrapositive of the original statement. The equivalence P → Q ⇔ ¬Q → ¬P
noted above is used extensively in constructing mathematical proofs.

One must be careful not to allow contradictions in logical arguments because,

starting from a contradiction, anything can be proven true. For example, one can

verify that P ∧ ¬P ⇒ Q is a valid logical equivalence. But, Q doesn’t appear on

the LHS. Thus, a contradiction in your assumptions can lead to a “correct” proof

for an arbitrary statement.

Fortunately, propositional logic has an axiomatic formulation that is consistent,

complete, and decidable. In this context, the term consistent means that the logi-

cal implications generated by the axioms do not contain a contradiction, the term

complete means that any valid logical implication can be generated by applying the

axioms, and the term decidable means there is a terminating method that always

determines whether a postulated implication is valid or invalid.

1.2.1 Fallacious Arguments

A fallacy is a component of an argument that is demonstrably flawed in its logic

or form, thus rendering the argument invalid. Recognizing fallacies in mathemat-

ical proofs may be difficult since arguments are often structured using convoluted

patterns that obscure the logical connections between assertions. We give below

examples for three types of fallacies that are often found in attempted mathematical

proofs.

Affirming the Consequent: If the Indian cricket team wins a test match, then all

the players will drink tea together. All the players drank tea together. Therefore the

Indian cricket team won a test match.

Denying the Antecedent: If Diego Maradona drinks coffee, then he will be fid-

gety. Diego Maradona did not drink coffee. Therefore, he is not fidgety.

Unwarranted Assumptions: If Yao Ming gets close to the basket, then he scores

a lot of points. Therefore, Yao Ming scores a lot of points.
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1.2.2 Quantifiers

Consider the statements “Socrates is a person” and “Every person is mortal”. In

propositional logic, there is no formal way to combine these statements to deduce

that “Socrates is mortal”. In the first statement, the noun “Socrates” is called the

subject and the phrase “is a person” is called the predicate. Likewise, in predicate

logic, the statement P (x) = “x is a person” is called a predicate and x is called a

free variable because its value is not fixed in the statement P (x).

Let U be a specific collection of elements and let P (x) be a statement that can

be applied to any x ∈ U . In first-order predicate logic, quantifiers are applied to

predicates in order to make statements about collections of elements. Later, we will

see that quantifiers are of paramount importance in rigorous proofs.

The universal quantifier is typically denoted by ∀ and it is informally read

“for all.” It follows that the statement “∀x ∈ U, P (x)” is true if P (x) is true for all

values of x in U . It can be seen as shorthand for an iterated conjunction because

∀x ∈ U, P (x)⇔
∧

x∈U
P (x),

where⇔ indicates that these statements are equivalent for all sets U and predicates

P . If U = ∅ is the empty set, then ∀x ∈ U, P (x) is vacuously true by convention

because there are no elements in U to test with P (x).

Returning to the motivating example, let us also define Q(x) =“x is mortal”.

With these definitions, we can write the statement “Every person is mortal” as

∀x, (P (x) → Q(x)). In logic, this usage implies that x ranges over the universal

set. In engineering mathematics, however, the range of free variables is typically

stated explicitly.

The other type of quantifier often seen in mathematical proofs is the existential
quantifier, denoted ∃. The statement “∃x ∈ U, P (x)” is true if P (x) is true for at

least one value of x in U . It can be seen as shorthand for an iterated disjunction

because

∃x ∈ U, P (x)⇔
∨

x∈U
P (x),

From these definitions, it follows naturally that ∀x ∈ U, P (x) ⇒ ∃x ∈ U, P (x). If

U = ∅ is the empty set, then ∃x ∈ U, P (x) is false by convention because there are

no elements in U .
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Based on the meaning of these quantifiers, one can infer the logical implications

¬ (∀x ∈ U, P (x))⇔ ∃x ∈ U,¬P (x)

¬ (∃x ∈ U, P (x))⇔ ∀x ∈ U,¬P (x).

Using the connection to conjunction and disjunction, these rules are actually equiv-

alent to De Morgan’s law for iterated conjunctions and disjunctions.

One can also define predicates with multiple free variables such as P (x, y) =“x

contains y”. Once again, these statements are assumed to be true or false for every

choice of x, y. There are 8 possible quantifiers for a 2-variable predicate and they

can be arranged according to their natural implications:

∀x,∀y, P (x, y) ⇒ ∃x,∀y, P (x, y) ⇒ ∀y,∃x, P (x, y) ⇒ ∃y,∃x, P (x, y)

m m
∀y,∀x, P (x, y) ⇒ ∃y,∀x, P (x, y) ⇒ ∀x,∃y, P (x, y) ⇒ ∃x, ∃y, P (x, y)

All of these implications follow from ∀x∀y = ∀y∀x, ∃x∃y = ∃y∃x, and the single

variable inference rule ∀x, P (x) ⇒ ∃x, P (x) except for two: ∃x,∀y, P (x, y) ⇒
∀y,∃x, P (x, y) and its symmetric pair.

To understand this last implication, consider an example where x is in a set I of

images and y is in a set C of colors. Then, ∃x, ∀y, P (x, y) means “there is an image

that contains all the colors” (e.g., an image of a rainbow) and ∀y,∃x, P (x, y) means

“for each color there is an image containing that color”. The first statement implies

the second because, in the second, the rainbow image satisfies the ∃x quantifier for

all y. To see that the implication is not an equivalence, consider a set of pictures

where each image contains exactly one color and there is one such image for each

color. In this case, it is true that “for each color there is an image containing that

color” but it is not true that ‘there is an image that contains all the colors”.

In quantified statements, such as ∃x ∈ U, P (x), the variable x is called a bound
variable because its value cannot be chosen freely. Similarly, in the statement

∃y ∈ U, P (x, y), x is a free variable and y is a bound variable.

Finally, we note that first-order predicate logic has an axiomatic formulation that

is consistent, complete, and semidecidable. In this context, semidecidable means

that there is an algorithm that, if it terminates, correctly determines the truth of any

postulated implication. But, it is only guaranteed to terminate for true postulates.
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1.3 Strategies for Proofs

The relation between intuition and formal rigor is not a trivial matter. Intuition

tells us what is important, what might be true, and what mathematical tools may be

used to prove it. Rigorous proofs are used to verify that a given statement which

appears intuitively true is indeed true. Ultimately, a mathematical proof is a con-

vincing argument that starts from some premises, and logically deduces the desired

conclusion. Most proofs do not mention the logical rules of inference used in the

derivation. Rather, they focus on the mathematical justification of each step, leaving

to the reader the task of filling the logical gaps. The mathematics is the major issue.

Yet, it is essential that you understand the underlying logic behind the derivation as

to not get confused while reading or writing a proof.

True statements in mathematics have different names. They can be called the-

orems, propositions, lemmas, corollaries and exercises. A theorem is a statement

that can be proved on the basis of explicitly stated or previously agreed assump-

tions. A proposition is a statement not associated with any particular theorem; this

term sometimes connotes a statement with a simple proof. A lemma is a proven

proposition which is used as a stepping stone to a larger result rather than an inde-

pendent statement in itself. A corollary is a mathematical statement which follows

easily from a previously proven statement, typically a mathematical theorem. The

distinction between these names and their definitions is somewhat arbitrary. Ulti-

mately, they are all synonymous to a true statement.

A proof should be written in grammatically correct English. Complete sen-

tences should be used, with full punctuation. In particular, every sentence should

end with a period, even if the sentence ends in a displayed equation. Mathemati-

cal formulas and symbols are parts of sentences, and are treated no differently than

words. One way to learn to construct proofs is to read a lot of well written proofs, to

write progressively more difficult proofs, and to get detailed feedback on the proofs

you write.

Direct Proof: The simplest form of proof for a statement of the form P → Q is

the direct proof. First assume that P is true. Produce a series of steps, each one

following from the previous ones, that eventually leads to conclusionQ. It warrants

the name “direct proof” only to distinguish it from other, more intricate, methods
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of proof.

Proof by Contrapositive: A proof by contrapositive takes advantage of the math-

ematical equivalence P → Q ⇔ ¬Q → ¬P . That is, a proof by contrapositive

begins by assuming that Q is false (i.e., ¬Q is true). It then produces a series of

direct implications leading to the conclusion that P is false (i.e., ¬P is true). It

follows that Q cannot be false when P is true, so P → Q.

Proof by Contradiction: A proof by contradiction is based on the mathematical

equivalence ¬(P → Q) ⇔ P ∧ ¬Q. In a proof by contradiction, one starts by

assuming that both P and ¬Q are true. Then, a series of direct implications are

given that lead to a logical contradiction. Hence, P∧¬Q cannot be true and P → Q.

Example 1.3.1. We wish to show that
√

2 is an irrational number.

First, suppose that
√

2 is a rational number. This would imply that there exist

integers p and q with q 6= 0 such that p/q =
√

2. In fact, we can further assume that

the fraction p/q is irreducible. That is, p and q are coprime integers (they have no

common factor greater than 1). From p/q =
√

2, it follows that p =
√

2q, and so

p2 = 2q2. Thus p2 is an even number, which implies that p itself is even (only even

numbers have even squares). Because p is even, there exists an integer r satisfying

p = 2r. We then obtain the equation (2r)2 = 2q2, which is equivalent to 2r2 = q2

after simplification. Because 2r2 is even, it follows that q2 is even, which means that

q is also even. We conclude that p and q are both even. This contradicts the fact

that p/q is irreducible. Hence, the initial assumption that
√

2 is a rational number

must be false. That is to say,
√

2 is irrational.

Example 1.3.2. Consider the following statement, which is related to Example 1.3.1.

“If
√

2 is rational, then
√

2 can be expressed as an irreducible fraction.” The con-

trapositive of this statement is “If
√

2 cannot be expressed as an irreducible frac-

tion, then
√

2 is not rational.” Above, we proved that
√

2 cannot be expressed as an

irreducible fraction and therefore
√

2 is not a rational number.

The final proof strategy we discuss is finite induction.

Definition 1.3.3. Let P (n) be a logical statement for each n ∈ N. The principle of

mathematical induction states that P (n) is true all n ∈ N if:
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1. P (1) is true, and

2. P (n)→ P (n+ 1) for all n ∈ N.

From a foundational perspective, this statement is essentially equivalent to the

existence and uniqueness of the natural numbers. It is taken as an axiom in the

Peano axiomatic formulation of arithmetic. In contrast, the ZF axiomatic formula-

tion of set theory defines the natural numbers as the smallest inductive set and the

existence of an inductive set is taken as an axiom.

Example 1.3.4. Let Sn =
∑n

i=1 i. We wish to show that the statement P (n) =

“Sn = n2+n
2

” is true for all n ∈ N. For n = 1, this is true because both expressions

equal 1. For P (n+ 1), we are given P (n) and can write

Sn+1 = Sn + (n+ 1) =
n2 + n

2
+ n+ 1 =

n2 + 3n+ 2

2
=

(n+ 1)2 + (n+ 1)

2
.

Thus, the result follows from mathematical induction.

More general forms of finite induction are also quite common but they can re-

duced to the original form. For example, letQ(m) be a predicate form ∈ N and de-

fine P (n) =“∀m ∈ Sn, Q(m)” for a sequence nested finite sets S1 ⊂ S2 ⊂ · · · ⊆ N.

Defining S∞ = ∪n∈NSn, we see that “∀n ∈ N, P (n)”⇔“∀m ∈ S∞, Q(m)” follows

from P (1) =“∀m ∈ S1, Q(m)” and “P (n) → P (n + 1)”⇔“∀m ∈ Sn, Q(m) →
∀m ∈ Sn+1, Q(m)”.

1.4 Set Theory

Set theory is generally considered to be the foundation of all modern mathematics.

This means that most mathematical objects (numbers, relations, functions, etc.)

are defined in terms of sets. Unfortunately for engineers, set theory is not quite

as simple as it seems. It turns out that simple approaches to set theory include

paradoxes (e.g., statements which are both true and false). These paradoxes can

be resolved by putting set theory in a firm axiomatic framework, but that exercise

is rather unproductive for engineers. Instead, we adopt what is called naive set
theory which rigorously defines the operations of set theory without worrying about

possible contradictions. This approach is sufficient for most of mathematics and

also acts as a stepping-stone to more formal treatments.
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A set is taken to be any collection of objects, mathematical or otherwise. For

example, one can think of “the set of all books published in 2007”. The objects in

a set are referred to as elements or members of the set. The logical statement “a is

a member of the set A” is written

a ∈ A.

Likewise, its logical negation “a is not a member of the set A” is written a /∈ A.

Therefore, exactly one of these two statements is true. In naive set theory, one

assumes the existence of any set that can be described in words. Later, we will see

that this can be problematic when one considers objects like the “set of all sets”.

One may present a set by listing its elements. For example, A = {a, e, i, o, u} is

the set of standard English vowels. It is important to note that the order elements are

presented is irrelevant and the set {i, o, u, a, e} is the same asA. Likewise, repeated

elements have no effect and the set {a, e, i, o, u, e, o} is the same as A. A singleton
set is a set containing exactly one element such as {a}.

There are a number of standard sets worth mentioning: the integers Z, the real
numbers R, and the complex numbers C. It is possible to construct these sets in a

rigorous manner, but instead we will assume their meaning is intuitively clear. New

sets can be defined in terms of old sets using set-builder notation. Let P (x) be a

logical statement about objects x in the set X , then the “set of elements in X such

that P (x) is true” is denoted by

{x ∈ X|P (x)}.

For example, the set of even integers is given by

{x ∈ Z|“x is even”} = {. . . ,−4,−2, 0, 2, 4, . . .}.

If no element x ∈ X satisfies the condition, then the result is the empty set which

is denoted ∅. Using set-builder notation, we can also recreate the natural numbers
N and the rational numbers Q with

N = {n ∈ Z|n ≥ 1}
Q = {q ∈ R|q = a/b, a ∈ Z, b ∈ N}.
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The following standard notation is used for interval subsets of the real numbers:

Open interval: (a, b) , {x ∈ R|a < x < b}
Closed interval: [a, b] , {x ∈ R|a ≤ x ≤ b}

Half-open intervals: (a, b] , {x ∈ R|a < x ≤ b}
[a, b) , {x ∈ R|a ≤ x < b}

Definition 1.4.1. For a finite set A, the cardinality |A| equals the number of el-

ements in A. If there is a bjiective mapping between the set A and the natural

numbers N, then |A| =∞ and the set is called countably infinite. If |A| =∞ and

the set is not countably infinite, then A is called uncountably infinite.

Example 1.4.2. The set of rational numbers is countably infinite while the set of

real numbers is uncountably infinite.

Example 1.4.3 (Russell’s Paradox). Let R be the set of all sets that do not contain

themselves orR = {S|S /∈ S}. Such a set is said to exist in naive set theory (though

it may empty) simply because it can be described in words. The paradox arises from

the fact that the definition leads to the logical contradiction R ∈ R↔ R /∈ R.

What this proves is that naive set theory is not consistent because it allows con-

structions that lead to contradictions. Axiomatic set theory eliminates this paradox

by disallowing self-referential and other problematic constructions. Thus, another

reasonable conclusion is that Russell’s paradox shows that the set R cannot exist in

any consistent theory of sets.

Another common question is whether there are sets that contains themselves. In

naive set theory, the answer is yes and some examples are the “set of all sets” and

the “set of all abstract ideas”. On the other hand, in the ZF axiomatic formulation

of set theory, it is a theorem that no set contains itself.

There are a few standard relationships defined between any two sets A,B.

Definition 1.4.4. We say that A equals B (denoted A = B) if, for all x, x ∈ A iff

x ∈ B. This means that

A = B ⇔ ∀x ((x ∈ A)↔ (x ∈ B)) .
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Definition 1.4.5. We say that A is a subset of B (denoted A ⊆ B) if, for all x, if

x ∈ A then x ∈ B. This means that

A ⊆ B ⇔ ∀x ((x ∈ A)→ (x ∈ B)) .

It is a proper subset (denoted A ⊂ B) if A ⊆ B and A 6= B.

There are also a number of operations between sets. Let A,B be any two sets.

Definition 1.4.6. The union of A and B (denoted A ∪ B) is the set of elements in

either A or B. This means that A ∪B = {x ∈ A or x ∈ B} is also defined by

x ∈ A ∪B ⇔ (x ∈ A) ∨ (x ∈ B).

Definition 1.4.7. The intersection ofA andB (denotedA∩B) is the set of elements

in both A and B. This means that A ∩B = {x ∈ A|x ∈ B} is also defined by

x ∈ A ∩B ⇔ (x ∈ A) ∧ (x ∈ B).

Two sets are said to be disjoint if A ∩B = ∅.

Definition 1.4.8. The set difference between A and B (denoted A−B or A \B) is

the set of elements in A but not in B. This means that

x ∈ A−B ⇔ (x ∈ A) ∧ (x /∈ B).

If there is some implied universal set U , then the complement (denoted Ac) is de-

fined by Ac = U − A

One can apply De Morgan’s Law in set theory to verify that

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc,

which allows us to interchange union or intersection with set difference.

We can also form the union or the intersection of arbitrarily many sets. This is

defined in a straightforward way,
⋃

α∈I
Sα = {x|x ∈ Sα for some α ∈ I}

⋂

α∈I
Sα = {x|x ∈ Sα for all α ∈ I}.
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It is worth noting that the definitions apply whether the index set is finite, countably

infinite, or even uncountably infinite.

Another way to build sets is by grouping elements into pairs, triples, and vectors.

Definition 1.4.9. The Cartesian Product, denoted A × B, of two sets is the set of

ordered pairs {(a, b)|a ∈ A, b ∈ B}. For n-tuples taken from the same set, the

notation An denotes the n-fold product A× A× · · · × A.

Example 1.4.10. If A = {a, b}, then the set of all 3-tuples from A is given by

A3 = {(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a), (b, a, b), (b, b, a), (b, b, b)}.

The countably infinite product ofX , denotedXω, is the set of infinite sequences

(x1, x2, x3, . . .) where xn ∈ X is arbitrary for n ∈ N. If the sequences are restricted

to have only a finite number of non-zero terms, then the set is usually denoted X∞.

One can also formalize relationships between elements of a set. A relation ∼
between elements of the set A is defined by the pairs (x, y) ∈ A × A for which

the relation holds. Specifically, the relation is defined by the subset of ordered pairs

E ⊆ A × A where the relation a ∼ b holds; so x ∼ y if and only if (x, y) ∈ E. A

relation on A is said to be:

1. Reflexive if x ∼ x holds for all x ∈ A

2. Symmetric if x ∼ y implies y ∼ x for all x, y ∈ A

3. Transitive if x ∼ y and y ∼ z, then x ∼ z for all x, y, z ∈ A

A relation is called an equivalence relation if it is reflexive, symmetric, and

transitive. For example, let A be a set of people and P (x, y) be the statement “x

has the same birthday (month and day) as y.” Then, we can define ∼ such that

a ∼ b holds if and only if P (x, y) is true. In this case, the set E is given by

E = {(x, y) ∈ A× A|P (x, y)}. One can verify that this is an equivalence relation

by checking that it is reflexive, symmetric, and transitive.

One important characteristic of an equivalence relation is that it partitions the

entire setA into disjoint equivalence classes. The equivalence class associated with

a ∈ A is given by [a] = {x ∈ A|x ∼ a}. In the birthday example, there is a natural

equivalence class associated with each day of the year. The set of all equivalence

classes is called the quotient set and is denoted A/∼= {[a]|a ∈ A}.
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In fact, there is a natural equivalence relation defined by any disjoint partition

of a set. For example, let Ai,j be the set of people in A whose birthday was on the

j-th day of the i-th month. It follows that x ∼ y if and only if there exists a unique

pair i, j such that x, y ∈ Ai,j . In this case, the days of year are used as equivalence

classes to define the equivalence relation.

Example 1.4.11. Consider the set N × N = {(a, b)|a, b ∈ N} of ordered pairs of

natural numbers. If one associates the element (a, b) with the fraction a/b, then the

entire set is associated with the set of (possibly reducible) fractions. Now, consider

the equivalence relation (a, b) ∼ (c, d) if ad = bc. In this case, two ordered pairs

are equivalent if their associated fractions evaluate to the same real number. The

quotient set N/∼ can therefore be associated with the set of reduced fractions.

Unfortunately, this section will not end on a happy note by saying that the ZFC

axiomatic formulation of set theory is consistent. Instead, we observe that Kurt

Gödel’s Incompleteness Theorems imply that, if ZFC is consistent, then this cannot

be proven using statements in ZFC and, moreover, it cannot be complete. On the

other hand, if ZFC is inconsistent, then it contains a paradox and one can prove any-

thing using statements in ZFC. Since ZFC manages to avoid all known paradoxes

and no contradictions have been so far, it is still the most popular formal system in

which to define mathematics.

1.5 Functions

In elementary mathematics, functions are typically described in terms of graphs and

formulas. The drawback of this approach is that one tends to picture only “nice”

functions. In fact, Cauchy himself published in 1821 an incorrect proof of the false

assertion that “a sequence of continuous functions that converges everywhere has a

continuous limit function.” Nowadays, every teacher warns their students that one

must be careful because the world is filled with “not so nice” functions.

The modern approach to defining functions is based on set theory. A function
f : X → Y is a rule that assigns a single value f(x) ∈ Y to each element x ∈ X .

The notation f : X → Y is used to emphasize the role of the domain X and the

codomain Y . The range of f is the subset of Y which is actually achieved by f ,

{f(x) ∈ Y |x ∈ X}. Since the term codomain is somewhat uncommon, people
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often use the term range instead of codomain either intentionally (for simplicity) or

unintentionally (due to confusion).

Definition 1.5.1. Formally, a function f : X → Y from X to Y is defined by a

subset F ⊂ X × Y such that Ax = {y ∈ Y |(x, y) ∈ F} has exactly one element

for each x ∈ X . The value of f at x ∈ X , denoted f(x), is the unique element of

Y contained in Ax.

Two functions are said to be equal if they have the same domain, codomain, and

value for all elements of the domain. A function f is called:

1. one-to-one or injective if, for all x, x′ ∈ X , if f(x) = f(x′) then x = x′;

2. onto or surjective if its range {f(x)|x ∈ X} equals Y ;

3. a one-to-one correspondence or bijective if it is both one-to-one and onto.

A bijective function f : X → Y has a unique inverse function f−1 : Y → X such

that f−1(f(x)) = x for all x ∈ X and f(f−1(y)) = y for all y ∈ Y . In fact,

any one-to-one function f : X → Y can be transformed into a bijective function

g : X → R with g(x) = f(x) by restricting its codomain Y to its range R.

Functions can also be applied to sets in a natural way. For a function f : X → Y

and subset A ⊆ X , the image of A under f is

f(A) , {y ∈ Y |∃x ∈ A s.t. f(x) = y} = {f(x)|x ∈ A}.

Using this definition, we see that the range of f is simply f(X). One benefit of

allowing functions to have set-valued images is that a set-valued inverse function

always exists. The inverse image or preimage of a subset B ⊆ Y is

f−1(B) , {x ∈ X|f(x) ∈ B}.

For a one-to-one function f , the inverse image of any singleton set {f(x)} is the

singleton set {x}. It is worth noting that the notation f−1(B) for the preimage of B

can be somewhat misleading because, in some cases, f−1(f(A)) 6= A. In general, a

function gives rise to the following property, f(f−1(B)) ⊆ B and f−1(f(A)) ⊇ A.

Example 1.5.2. Let the function f : R→ R be defined by f(x) = x2. LetA = [1, 2]

and notice that B = f(A) = [1, 4]. Then,

f−1(B) = f−1([1, 4]) = [−2,−1] ∪ [1, 2] ⊇ A.
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Example 1.5.3. Let the function f : R → R be defined by f(x) = x2 + 1. Let

B = [0, 2] and notice that A = f−1(B) = [−1, 1]. Then,

f(A) = f([−1, 1]) = [1, 2] ⊆ B.

Problem 1.5.4. For all f : X → Y , A ⊆ X , and B ⊆ Y , we have the rules:

(a) x ∈ A⇒ f(x) ∈ f(A) (b) y ∈ f(A)⇒ ∃x ∈ A s.t. f(x) = y

(c) x ∈ f−1(B)⇒ f(x) ∈ B (d) f(x) ∈ B ⇒ x ∈ f−1(B).

Use these rules to show that f−1(f(A)) ⊇ A and f(f−1(B)) ⊆ B.

Solution 1.5.4. The first result follows from

x ∈ A (a)⇒ f(x) ∈ f(A)
(d)⇒ x ∈ f−1(f(A)),

and the definition of subset. The second result follows from

y ∈ f(f−1(B))
(b)⇒ ∃x ∈ f−1(B) s.t. f(x) = y

(c)⇒ y ∈ B,

and the definition of subset.

Problem 1.5.5. Let f : X → Y , Ai ⊆ X for all i ∈ I , and Bi ⊆ Y for all i ∈ I .

Show that the following expressions hold:

(1) f

(⋃

i∈I
Ai

)
=
⋃

i∈I
f (Ai) (2) f

(⋂

i∈I
Ai

)
⊆
⋂

i∈I
f (Ai)

(3) f−1

(⋃

i∈I
Bi

)
=
⋃

i∈I
f−1 (Bi) (4) f−1

(⋂

i∈I
Bi

)
=
⋂

i∈I
f−1 (Bi) .
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